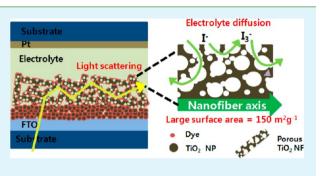
ACS APPLIED MATERIALS


Designed Architecture of Multiscale Porous TiO₂ Nanofibers for Dye-Sensitized Solar Cells Photoanode

Sun Hye Hwang, Chanhoi Kim, Hee Song, Suim Son, and Jyongsik Jang*

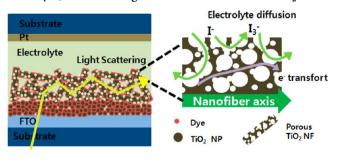
World Class University (WCU) program of Chemical Convergence for Energy & Environment (C₂E₂), School of Chemical and Biological Engineering, Seoul National University, 599 Gwanangno, Gwanakgu, Seoul 151-742, Korea

Supporting Information

ABSTRACT: Multiscale porous (MSP) TiO₂ nanofibers (NFs) were fabricated using a simple electrospinning and etching process with TiO₂/SiO₂ composite NFs for high-efficiency dye-sensitized solar cells (DSSCs). TiO₂ NFs with different pore sizes (small, large, and multiscale) were prepared using SiO₂ nanoparticles of various sizes. The surface area of the MSP TiO₂ NFs was nine times higher than that of pristine TiO₂ NFs, providing sufficient dye adsorption for light harvesting as well as efficient paths for electrolyte contact. Moreover, the one-dimensional structure provides efficient light scattering and fast electron transport. As a result, DSSCs exhibited an enhanced current density (J_{sc}) of 16.3

mA cm⁻² and a high photoconversion efficiency (η) of 8.5%, greater than those of conventional photoelectrodes made of TiO₂ nanoparticles (J_{sc} of 12.0 mA cm⁻² and η of 6.0 %).

KEYWORDS: porous TiO₂, TiO₂ nanofiber, light scattering, multifunctional TiO₂, dye-sensitized solar cell


INTRODUCTION

Dye-sensitized solar cells (DSSCs) have been recognized as promising candidates for next-generation solar cells.^{1–3} Theoretical and experimental research has focused on their high power conversion efficiency of up to 11%,^{4,5} whereas continuing efforts have been devoted to improving efficiency.^{6–10} To enhance the efficiency of DSSCs, approaches such as a thin blocking layer on the anode electrode, various metal oxide material structures and TiO₂ film pore-size distributions, and TiCl₄ post-treatment on nanocrystalline TiO₂ have been developed.^{11–18}

The structure of scattering materials has been studied because it confines incident light within an electrode, thus enhancing photocurrent density.^{19–21} Koo et al. reported that hollow spherical TiO₂ nanoparticles could increase the efficiency of solar cells based on their high surface area and light-scattering effect.²² However, although hollow TiO₂ nanoparticles have a high surface area for the attachment of dye molecules, structural disorder caused by the grain boundaries of adjacent nanoparticles leads to the loss of free electrons and reduced carrier mobility.^{23–25} Joshi suggested the use of one-dimensional TiO₂ nanofibers (NFs) to enhance light harvesting and fast electron transport.²⁶ One-dimensional nanostructures, including NFs, nanowires, nanorods, and their composites with TiO₂ nanoparticles, could also improve the electron mobility and transport rate.^{27–34} However, dye adsorption is expected to be much less for these onedimensional structures than for nanoparticles owing to their lower surface area. In general, high specific surface area, pronounced light-scattering effects and facilitate electrolyte diffusion are critical for a high-performance photoanode, but these factors are often incompatible with one another. To achieve these characteristics, we propose a new multifunctional material that offers high surface area, strong light scattering, and circulation for electrolyte reduction.

We successfully fabricated multiscale porous (MSP) TiO_2 NFs using a simple electrospinning method. TiO_2 NFs were prepared with different pore sizes (small, large, and multiscale). Scheme 1 shows an illustration of the MSP NF-coated TiO_2 nanoparticle films. The surface area of the MSP TiO_2 NFs was nine times higher than that of the pristine TiO_2 nanofibers,

Scheme 1. Schematic Illustration of the $15-20 \text{ nm TiO}_2$ Nanoparticle (NP) Underlayer, the MSP TiO₂ NF Scattering Overlayer, And the Magnified Structure of MSP TiO₂ NFs

Received: July 5, 2012 Accepted: September 17, 2012 Published: September 17, 2012

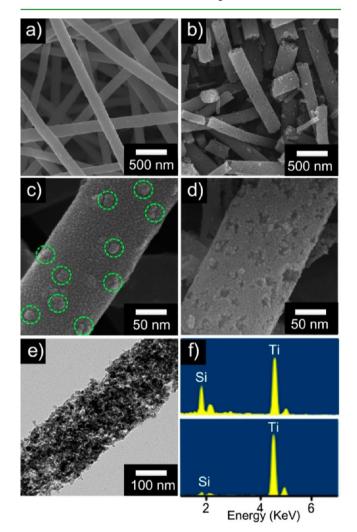
ACS Applied Materials & Interfaces

which adsorbed a sufficient amount of dye for light harvesting. Moreover, after sunlight passed through the MSP TiO₂ NF layer, the remnant light could be scattered back for regeneration of dye molecules. Importantly, large pores in MSP TiO₂ NFs provided a place for circulation, facilitating electrolyte diffusion for oxidation reactions as shown in Scheme 1. Therefore, the MSP structure of TiO₂ NFs enabled sufficient dye adsorption, light scattering, and circulation of electrolyte. The efficiency of MSP TiO₂ DSSCs can be improved by 6.0– 8.5%, which is indicative of ca. 42% over TiO₂ nanoparticles.

EXPERIMENTAL SECTION

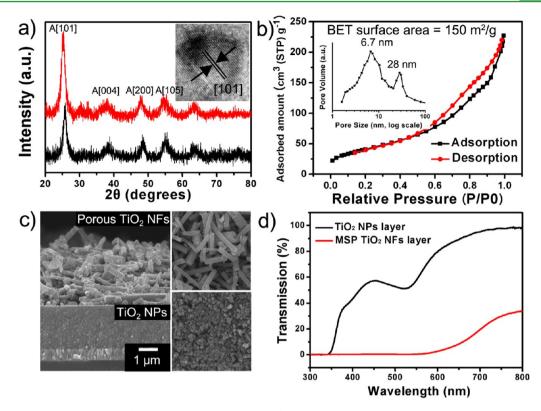
Materials. Poly(vinylpyrrolidone) (PVP, $M_w = 1300000$), titanium isopropoxide (TTIP, Ti{OCH(CH₃)₂}₄), tetraethyl orthosilicate (TEOS, Si(OC₂H₅)₄) were purchased from Aldrich Chemical Co. TiO₂ nanoparticles (NPs) (Solaronix, Ti-Nanoxide T), *cis*disothiocyanato-bis (2, 20-bipyridyl-4, 40-dicarboxylato) ruthenium-(II) bis(tetrabutylammonium) (N-719), and an iodide-based redox electrolyte (AN50) were purchased from Solaronix (Aubonne, Switzerland). FTO glass (15 Ω cm⁻², thickness of 2.2 mm) was obtained from Pilkington (Toledo, USA).

Preparation of Porous TiO₂ Nanofibers. SiO₂ nanoparticles were prepared via the Stöber method for fabrication of porous TiO₂ nanofibers (NFs).³⁵ A solution containing 148 mL of ethanol, 6 mL of ammonia solution, and 6 mL of tetraethyl orthosilicate was stirred for 12 h at 50°C to obtain a SiO₂ colloidal solution. The prepared SiO₂ solution was dispersed in 100 mL absolute ethanol. Then, 15 g poly(vinyl pyrrolidone) was dissolved in 100 mL of SiO2 colloidal solution and stirred vigorously for 2 h. The final solution was prepared by dissolving various amounts of titanium isoproxide and acetic acid. The viscous hybrid solution was injected using a syringe. The diameter of the needle in the electrospinning was 0.1 mm, and the needle was conneted to the positive terminal of a power supply. The flow rate of the solution was 10 μ L min⁻¹, controlled by a syringe pump purchased from KD Scientific (USA). A voltage of 10 kV was applied between the needle and the collector, which was grounded and used to collect the NFs at room temperature, and the distance between the nozzle and collector was 15 cm. The collector area was 600 cm². Next, the electrospun NFs were calcined at 500 °C for 6 h. The prepared SiO₂/ TiO₂ NFs were etched by HF solution to obtain porous TiO₂ NFs.


Assembly of Dye-Sensitized Solar Cell. The TiO₂ film with double-layered structure was composed of the TiO₂ NP (15-20 nm) underlayer and the MSP TiO2 NF overlayer. As a control, the film was prepared using only TiO₂ NPs with a diameter of ca. 15-20 nm. To prepare a mixture of MSP TiO2 NFs and paste, we dispersed MSP TiO₂ NFs in anhydrous ethanol by sonication for 30 min before drying of MSP TiO₂ NFs. The samples within range of 0-22.5% were added to the paste and then mixed using a mortar and pestle. The paste was composed of 2.5 mL of terpineol, 0.1 g of ethyl cellulose, and 0.18 g of lauric acid. Fluorine-doped tin dioxide (FTO) glass substrates were cleaned by successive sonication in deionized water, acetone, and 2propanol for 60 min each, and then treated with oxygen plasma for 30 s. Fluorine-doped tin oxide (FTO) glass substrate was pretreated with 40 mM TiCl₄ solution and heated at 450 °C for 30 min. A photoanode was prepared by applying the $\rm TiO_2$ NPs underlayer and MSP $\rm TiO_2$ NF overlayer onto the FTO substrate using a doctor blade. The photoanodes were sintered at 450 °C for 30 min, and then treated with TiCl₄ and sintered again as above. The resulting TiO₂ films were immersed in acetonitrile and tert-butanol (5:5 v/v) containing 5 \times 10⁻⁴ M of N-719 and kept at room temperature for 36 h. Pt counter electrodes were prepared on the FTO glasses using 5 mM $\rm H_2PtCl_6$ solution, followed by heating at 400°C for 30 min in air. In a sealed cell, iodide-based low-viscosity electrolyte with 50 mM tri-iodide, ionic liquid, lithium salt, and pyridine derivative in acetonitrile (AN50) was introduced.

Instrument. The morphology of porous TiO_2 NFs was investigated by field-emission scanning electron microscopy (FE-SEM) (JEOL 6700) and transmission electron microscopy (TEM)

(JEOL JEM-200CX). X-ray diffraction (XRD) data were obtained using an M18XHF-SRA (Mac Science Co.) with a Cu K α radiation source ($\lambda = 1.5406$ Å) at 40 kV and 300 mA (12 kW). BET surface areas of nanofibers were acquired using a Micromeritic analyzer (ASAP 2000, Micromeritic Co.) Diffuse reflectance spectra were measured by Lambda 1050 from PerkinElmer. The photocurrent–voltage (I-V) characteristics of the assembled DSSCs were evaluated using a 500 W xenon lamp (XIL model 05A50KS source units). The incident photon-to-current efficiency (IPCE, PV measurements, Inc.) was measured from 300 nm to 800 nm under under the global AM 1.5 solar emission spectrum.


RESULTS AND DISCUSSION

MSP TiO_2 NFs were fabricated by a simple electrospinning method. A mixed solution containing colloidal SiO_2 nano-

Figure 1. FE-SEM images of (a) SiO_2/TiO_2 composite nanofibers (STC NFs) and (b) MSP TiO_2 NFs. (c) High-magnification SEM image of an STC NF and (d) high-magnification SEM image of an MSP TiO_2 NF. TEM image of (e) MSP TiO_2 NF and (f) EDS data for the STC NFs (top) and MSP TiO_2 NFs (bottom).

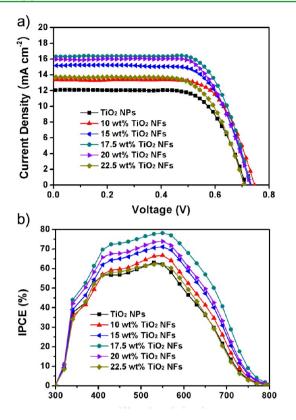

particles (20 nm), tetraethyl orthosilicate (TEOS), titanium isoproxide (TTIP), poly(vinyl pyrrolydone) (PVP), acetic acid, and absolute ethanol was jetted by a single spinneret. Electrospun NFs were calcined at 500 °C for 6 h, and and then the SiO₂ portion of the prepared SiO₂/TiO₂ composite (STC) NFs was etched with an HF solution which concentration was 0.42 wt % for 18 h. Finally, MSP TiO₂

Figure 2. XRD patterns of (a) STC NFs (black) and MSP TiO_2 NFs (red). The letter "A" denotes peaks for the anatase phase, and the inset HR-TEM image shows *d*-spacing of the MSP TiO_2 NFs. (b) Nitrogen adsorption isotherm of the MSP TiO_2 NFs. (c) Cross-sectional SEM image of a double-layer structure with the TiO_2 NP (15–20 nm) underlayer and the MSP TiO_2 NF overlayer and surface SEM images for each layer. (d) Transmission spectrum for the 15-20 nm TiO_2 nanoparticle layer (black) and MSP TiO_2 NF layer (red) after dyeing at the same thickness.

NFs were fabricated. A field-emission scanning electron microscopy (FE-SEM) image of the STC NFs after calcination at 500°C for 6 h is shown in Figure 1a. The obtained STC NFs had diameters of 250 nm or larger and lengths greater than 50 μ m. As shown in Figure 1b, the diameters of the prepared MSP TiO₂ NFs were the same as the STC NFs. However, the MSP TiO₂ NFs were shorter than the STC NFs due to HF etching. The high-resolution SEM image of STC NFs (Figure 1c) shows that SiO₂ nanoparticles were embedded in TiO₂ (the dashed circles indicate embedded SiO₂ nanoparticles). Figure 1d shows wormhole-like pores in the TiO₂ NFs, which originated from the removal of SiO₂ via HF etching. Figure 1e shows a transmission electron microscopy (TEM) image of an MSP TiO₂ NF. The TiO₂ NFs had an MSP structure that consisted of small pores due to TEOS (SiO₂ precursor) and large pores due to colloidal SiO₂ nanoparticles. The MSP TiO₂ NFs were made up of TiO₂ nanoparticles with an average diameter of ~10 nm. Energy-dispersive X-ray spectroscopy (EDS) results indicated that the atomic ratio of Si to Ti changed from 27:73 to 0.5:99.5 because of removal of SiO₂ by HF etching.

X-ray diffraction (XRD) analysis was performed to confirm the crystallization of MSP TiO₂ NFs. As shown in Figure 2a, XRD results showed that electrospun STC NFs (black) and MSP TiO₂ NFs (red) consisted of the anatase phase with an average diameter of approximately 10 nm. High-resolution transmission electron microscopy (HR-TEM) analysis was also used to investigate the crystalline phase of TiO₂ NFs. In the HR-TEM image in Figure 2a, a lattice spacing of 0.35 nm can be observed, implying the presence of anatase crystalline phase of TiO₂ [101] planes. The anatase phase of TiO₂ possesses a higher electron transport capability than the rutile phase, leading to better photovoltaic performance.³⁶ Figure 2b shows that the pore volume and Brunauer-Emmett-Teller (BET) surface areas of MSP TiO $_2$ NFs were 0.31 cm 3 g $^{-1}$ and 150 m 2 g^{-1} , respectively. The pore sizes of the MSP TiO₂ NFs were determined to be 6.7 nm by 28 nm by measuring the Barrett-Joyner-Halenda (BJH) pore distribution. Figure 2c shows SEM cross-sectional images of a double-layered structure (ca. 3 μ m-thick TiO₂ nanoparticle layer (15–20 nm) and ca. 5 μ m porous TiO₂ NFs [250 nm]) on the glass substrates. The welldefined shape, size, and uniformity of the nanoparticles and NFs are clearly observed. As shown in Figure 2d, the transmission of incident light in the range of 300-800 nm was investigated for single TiO₂ NPs layer and the double layer containing TiO₂ NPs and MSP TiO₂ NFs after dyeing. In case of single TiO₂ NPs layer, transmission of incident light at 750 nm was 97 %. At nearly 400 nm and 535 nm, decreased transmission in the curve was observed due to absorption of light by N-719 (Dye). On the other hand, the transmission of incident light in the range of 300-800 nm for the double layer containing TiO₂ nanoparticles and MSP TiO₂ NFs was significantly suppressed compared to a single TiO₂ NPs layer, indicating that the layer of MSP TiO₂ NFs was sufficient for light scattering and absorption in the range of 300-800 nm. Diffuse reflectance of TiO₂ NPs layer and MSP TiO₂ NFs layer with and without dye was also investigated to confirm light scattering effect (see Figure S1 in the Supporting Information). Light scattering depends on the size of NFs. Forward scattering increases with increasing fiber diameter, whereas backward scattering is negligible regardless of fiber diameter. Forward scattering intensity for the 200 nm NFs was relatively weak. When the diameters of the NFs increased to 200 nm or larger,

Figure 3. (a) Current density-voltage (J-V) curves and (b) incident photon-to-electron conversion efficiencies (IPCE) for the DSSCs fabricated from the double-layer structure of 10 nm nanoparticles and MSP TiO₂ NFs with different MSP TiO₂ NF/paste weight ratios.

Table 1. Summary of Photovoltaic Properties of the DSSCs with Photoanodes Containing Various MSP $TiO_2 NFs^a$

	$(\text{mA cm}^{J_{sc}})$	$egin{array}{c} V_{oc} \ ({ m V}) \end{array}$	FF (%)	η (%)	Thickness (µm)
TiO ₂ NPs	12.0	0.71	69.5	6.0	8.0
10 wt % NFs	14.0	0.75	68.6	7.0	4.3
15 wt % NFs	15.2	0.73	68.8	7.7	6.8
17.5 wt % NFs	16.3	0.73	70.9	8.5	8.0
20 wt % NFs	16.0	0.72	69.3	8.1	9.2
22.5 wt % NFs	13.7	0.70	68.0	6.6	10.5

^{*a*}Measurement were performed under AM 1.5G one sun light intensity of 100 W cm⁻² and the active areas were about 0.25 cm² for all of the cells.

the light scattering became substantially stronger.³⁷ Because the diameters of the MSP TiO_2 NFs were ca. 200–300 nm, these NFs induced strong light scattering and thereby enhanced light harvesting.

Figure 3a shows the dependence of current density–voltage curves (J-V curves) on the concentration of MSP TiO₂ NFs. The efficiency of DSSCs significantly increased with increasing MSP TiO₂ NF concentration up to 17.5 wt %. In particular, the solar cell device containing 17.5 wt % MSP TiO₂ NFs exhibited a short-circuit current density (J_{sc}) of 16.3 mA cm⁻² and an energy conversion efficiency (η) of 8.5% (Figure 3a and Table 1). Compared to 17.5 wt % MSP TiO₂ NFs, the DSSC containing 10 wt % MSP TiO₂ NFs had J_{sc} and η values of 14.0 mA cm⁻² and 7.0% (Figure 3a and Table 1). The thickness of the NF layer also increased with increasing MSP TiO₂ NF weight percent, leading to decrease open-circuit photovoltage

Table 2. Summary of photovoltaic properties of the DSSCs with photoanode containing different pore type of TiO_2 NFs^{*a*}

	(mA cm^{-2})	$V_{\rm oc}$ (V)	FF (%)	η (%)	surface area (m2 g-1)	adsorbed dye $(\times 10^{-6} \text{ mol g})^{-1}$
TiO ₂ NPs	12.0	0.71	69.5	6.0		146.0
TiO ₂ NFs	10.7	0.71	62.4	4.8	19	63.9
LP TiO ₂ NFs	12.6	0.72	65.1	6.0	28	73.4
SP TiO ₂ NFs	15.6	0.72	67.5	7.6	128	112.7
MSP TiO ₂ NFs	16.3	0.73	70.9	8.5	150	132.7

^{*a*}Measurements were performed under AM 1.5 G one sun light intensity of 100 W cm⁻² and the active areas were about 0.25 cm² for all of the cells.

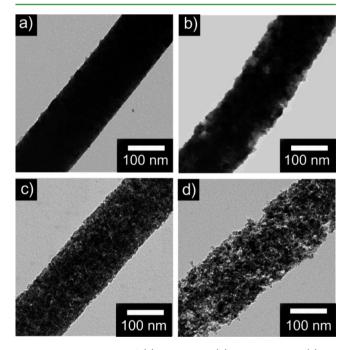
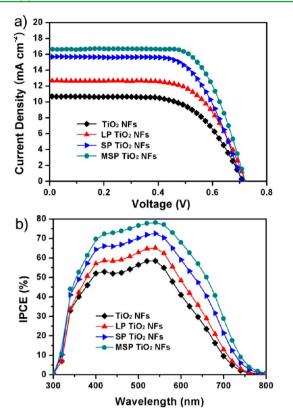



Figure 4. TEM images of (a) TiO_2 NFs, (b) LP TiO_2 NFs, (c) SP TiO_2 NFs, and (d) MSP TiO_2 NFs after HF etching.

 $(V_{\rm oc})$. A thicker film could provide a higher surface area for dye adsorption on the MSP TiO₂ NFs. However, when the amount of MSP TiO₂ NFs was greater than 17.5 wt %, the efficiency of the DSSC decreased significantly. The reason is that J_{sc} and V_{oc} decrease with increasing film thickness, due to augmentation of the surface area, which provides additional charge-recombination sites and enhances the dark current.²⁰ Moreover, a thick outer TiO₂ particle region does not contribute significantly to the photogeneration of conduction-band electrons due to light filtering by particles located close to the fluorinated tin oxide (FTO) glass. The DSSCs made using only TiO₂ nanoparticles had J_{sc} and η values of 12.0 mA cm⁻² and 6.0 % (Figure 3a and Table 1). The J_{sc} of the MSP TiO₂ NFs was greater than that of the DSSC containing only TiO₂ nanoparticles, even though the TiO_2 film thicknesses were the same. As shown in the table 2, the amount of adsorbed dye on TiO₂ NPs is more than MSP

Figure 5. (a) Current density–voltage (J-V) curves. (b) Incident photon-to-electron conversion efficiencies (IPCE) for the DSSCs fabricated from the double-layer structure consisting of 10 nm nanoparticles and TiO₂ NFs with different pore sizes.

 TiO_2 NFs. Judging from this data, the significant increase in J_{sc} is related to light scattering.^{26,38}

Figure 3b indicates that incident photon-to-electron conversion efficiencies (IPCE) were greatly enhanced with increased MSP TiO₂ NF concentration. To confirm light scattering effect, the IPCE of MSP TiO₂ NFs content of 17.5 wt % was compared to only TiO₂ NPs. The quantum efficiency enhanced from 36% to 57% around 650 nm, which is indicative of ca. 57% over only TiO₂ nanoparticles. On the basis of these data, 79% of incident light in the visible region was easily absorbed by the MSP TiO₂ NF layer, leading to significant enhancement of the solar cell efficiency by strong light scattering.

Figure 4 shows the synthesized TiO_2 NFs with different pore types. The pore size of the TiO_2 NFs was controlled by the SiO_2 etching process (Figure 4a–d). In HF solution, silicon– oxygen bonding is broken by protonation of a surface oxygen atom bonded to the silicon atom (eq 1). Then, silicon–fluorine bonds form by nucleophilic attachment of HF^{2–} (or H₂F₂) to the electrophilic silicon atom (eq 2). Consequently, the silica part of the NFs was removed by HF treatment.³⁹

$$Si - O - X + H^+ \rightarrow Si - O(H) + -X (X = Si \text{ or } H)$$
(1)

$$Si - O(H^+) - X + HF^{2-} \rightarrow Si - F + HO - X + HF$$
(2)

The size of the SiO_2 region, formed by SiO_2 colloidal nanoparticles and SiO_2 precursor, plays a key role in the formation of various pore sizes. Large-pore (LP) TiO₂ NFs were prepared by removing SiO₂ colloidal nanoparticles, and

small-pore (SP) TiO₂ NFs were prepared by removing small SiO₂ nanoparticles formed by the SiO₂ precursor. In addition, MSP TiO₂ NFs were obtained from SiO₂ colloidal nanoparticles and SiO₂ precursor containing the NFs (Figure 4a-d). Especially, among the TiO₂ NFs with different pore types, surface area of MPS TiO₂ NFs is largest. The polymer solution containing TiO₂ precursor, SiO₂ colloidal nanoparticles, and SiO₂ precursor was prepared by vigorously stirring. Under the vigorous stirring, SiO₂ precursor in polymer solution could disperse smaller droplet by collision between SiO₂ colloidal nanoparticles and SiO₂ precursor, resulting that smaller SiO₂ region could be formed compared to polymer solution without SiO₂ colloidal nanoparticles. Therefore, smaller pore size by SiO₂ precursor and large pore size by SiO₂ NPs could lead to largest surface area of MSP TiO₂ NFs compared with large pore TiO₂ and small pore TiO₂ NFs. Effect of pores on the light scattering was investigated by measuring the diffuse reflectance spectra (DRS) (see Figure S1 in the Supporting Information).

To determine the effect of TiO₂ NF morphology on the photovoltaic properties of DSSCs, we coated different TiO₂ NF layers with different pore types on highly transparent 15-20 nm TiO_2 nanoparticle films. As shown in Table 2, the surface area of MSP TiO₂ NFs was nine times larger than that of the SP and LP TiO₂ NFs. Pores made by removing the SiO₂ precursor played an important role in enhancing the surface area of TiO₂ NFs. The solution of SiO₂ colloidal nanoparticles and SiO₂ precursor provided the largest surface area. Moreover, a small amount of residue SiO_2 on the surface area of the TiO_2 could increase light scattering efficiency because difference of refractive index (n).The reflectance of anatase TiO₂ NFs $(n_{\text{TiO2}} = 2.49)$ is higher than that of residue SiO₂ $(n_{\text{SiO2}} = 1.47)$, leading to increase in the refractive index difference between the two materials and the surrounding matrix $(n_{air} = 1.00)$, attributing to the increase in the scattering efficiency.⁴⁰ As a result, the conversion efficiency of MSP TiO₂ NFs was improved from 4.8% to 8.5% compared to that of TiO₂ NFs (Figure 5a). MSP TiO₂ NFs had the highest short-circuit current density (J_{sc}) of the TiO₂ NFs, which was probably related to the amount of adsorbed dye. Thus, dye uptake among TiO₂ NFs with different pore types should be considered. Dye uptake increased drastically with increasing surface area. The amount of adsorbed dye for the MSP TiO₂ NFs was 132.7 mol g⁻¹, which was approximately two times larger than for TiO₂ NFs (63.9 mol g^{-1}). The increased dye absorption on MSP TiO₂ NFs was due to their high surfaces area. Thus, pore size likely influences the efficiency of solar cells. The pore size of SP TiO₂ NFs was determined to be 6.7 nm when formed by a SiO₂ precursor. These pores were occupied by dye molecules (molecular diameter of 1.5 nm) that had adsorbed on the pore walls, leaving an aperture for electrolyte diffusion. The aperture was similar in size to an I₂⁻ ion; thus, Fick's law of diffusion was not valid. The diffusion kinetics in the electrolyte was the limiting step in the current production. On the other hand, MSP TiO2 NFs consisted of pores with diameters of 6.7 nm and 28 nm. SPs can induce the adsorption of dye molecules, and LPs can increase the adsorption of dye molecules on the wall as well as facilitate electrolyte diffusion and circulation for regenerating sensitized dye molecules.⁷ Thus, the MSP TiO₂ NFs could enhance the efficiency of DSSCs compared to SP TiO₂ NFs.

Figure 5b shows the IPCE spectra as a function of wavelength for the TiO_2 NFs. The IPCE of MSP TiO_2 NFs was higher than that of the other three samples over the entire

ACS Applied Materials & Interfaces

wavelength region, which is in good agreement with the observed higher J_{sc} . The difference in IPCE at shorter wavelengths may be attributable to different absorbed dye concentrations. The shape of IPCE spectra at long wavelengths was similar for all samples because of the similar light-scattering effect.¹⁹

In conclusions, we fabricated MSP TiO_2 NFs and investigated their photovoltaic performance in DSSCs. The surface area of the MSP TiO_2 NFs was nine times larger than that of SP and LP TiO_2 NFs, leading to enhanced adsorption of dye molecules. In addition, MSP TiO_2 NFs exhibited excellent light scattering. LPs in MSP TiO_2 NFs provide a place for circulation and facilitate electrolyte diffusion for oxidation reaction. By controlling the thickness of the photoanode layer, the conversion efficiency of MSP TiO_2 NFs was improved by up to 8.5%. Therefore, MSP TiO_2 NFs can be used as an efficient material for high-efficiency DSSCs. In addition, our approach enables the utilization of a porous structure in electrode materials, such as catalysts for various energy applications, rechargeable batteries, and supercapacitors.

ASSOCIATED CONTENT

S Supporting Information

Additional figures (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: jsjang@plaza.snu.ac.kr.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by Global Frontier R&D Program on Center for Multiscale Energy System funded by the National Research Foundation under the Ministry of Education, Science and Technology, Korea(2011-0031573) and WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31-10013).

REFERENCES

(1) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737-740.

- (2) Grätzel, M. Nature 2001, 414, 338-344.
- (3) Cho, S.; Hwang, S. H.; Kim, C.; Jang, J. J. Mater. Chem. 2012, 22, 12164–12171.

(4) Wang, Q.; Ito, S.; Grätzel, M.; Fabregat-Santiago, F.; Mora-Seró, I.; Bisquert, J.; Bessho, T.; Imai, H. *J. Phys. Chem. B* **2006**, *110*, 25210–25221.

(5) Grätzel, M. Inorg. Chem. 2005, 44, 6841-6851.

(6) Sauvage, F.; Chen, D.; Comte, P.; Huang, F.; Heiniger, L. P.; Cheng, Y. B.; Caruso, R. A.; Graetzel, M. ACS Nano **2010**, *4*, 4420– 4425.

(7) Lee, Y. M.; Kim, Y. H.; Lee, J. H.; Park, J. H.; Park, N. G.; Choe, W. S.; Ko, M. J.; Yoo, P. J. Adv. Funct. Mater. **2011**, 21, 1160–1167.

(8) Grinis, L.; Kotlyar, S.; Rühie, S.; Grinblat, J.; Zaban, A. Adv. Funct. Mater. **2010**, 20, 282–288.

(9) Muduli, S.; Lee, W.; Dhas, V.; Mujawar, S.; Dubey, M.; Vijayamohanan, K.; Han, S. H.; Ogale, S. ACS Appl. Mater. Interfaces **2009**, *1*, 2030–2035.

(10) Hwang, D.; Lee, H.; Jang, S. Y.; Jo, S. M.; Kim, D.; Seo, Y.; Kim, D. Y. ACS Appl. Mater. Interfaces **2011**, *3*, 2719–2725.

(11) Cameron, P. J.; Peter, L. M. J. Phys. Chem. B 2003, 107, 14394–14400.

(12) Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R. J. Am. Chem. Soc. **2003**, 125, 475–482.

- (13) Hwang, S. H.; Song, J.; Jung, Y.; Kweon, O. Y.; Song, H.; Jang, J. *Chem. Commun.* **2011**, *47*, 9164–9166.
- (14) Oh, W. K.; Kim, S.; Choi, M.; Kim, C.; Jeong, Y. S.; Cho, B. R.; Hahn, J. S.; Jang, J. ACS Nano **2010**, *4*, 5301–5313.
- (15) Barbé, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Grätzel, M. J. Am. Ceram. Soc. **1997**, 80, 3157–3171.

(16) Yu, H.; Xue, B.; Liu, P.; Qiu, J.; Wen, W.; Zhang, S.; Zhao, H. ACS Appl. Mater. Interfaces **2012**, *4*, 1289–1294.

(17) Sommeling, P. M.; O'Regan, B. C.; Haswell, R. R.; Smit, H. J. P.; Bakker, N. J.; Smits, J. J. T.; Kroon, J. M.; Van Roosmalen, J. A. M. *J. Phys. Chem. B* **2006**, *110*, 19191–19197.

(18) O'Regan, B. C.; Durrant, J. R.; Sommeling, P. M.; Bakker, N. J. J. *Phys. Chem. C* **2007**, *111*, 14001–14010.

(19) Wu, X.; Chen, Z.; Max, Lu, G. Q.; Wang, L. Adv. Funct. Mater. 2011, 21, 4167–4172.

(20) Wang, Z. S.; Kawauchi, H.; Kashima, T.; Arakawa, H. Coord. Chem. Rev. 2004, 248, 1381–1389.

(21) Ito, S.; Zakeeruddin, S. M.; Humphry-Baker, R.; Liska, P.; Charvet, R.; Comte, P.; Nazeeruddin, M. K.; Péchy, P.; Takata, M.; Miura, H.; Uchida, S.; Grätzel, M. *Adv. Mater.* **2006**, *18*, 1202–1205. (22) Koo, H. J.; Kim, Y. J.; Lee, Y. H.; Lee, W. I.; Kim, K.; Park, N. G.

- *Adv. Mater.* **2008**, 20, 195–199.
- (23) Kang, T. S.; Smith, A. P.; Taylor, B. E.; Durstock, M. F. Nano Lett. 2009, 9, 601–606.

(24) Tan, B.; Wu, Y. J. Phys. Chem. B 2006, 110, 15932-15938.

- (25) Ohsaki, Y.; Masaki, N.; Kitamura, T.; Wada, Y.; Okamoto, T.; Sekino, T.; Niihara, K.; Yanagida, S. *Phys. Chem. Chem. Phys.* **2005**, *7*, 4157–4163.
- (26) Joshi, P.; Zhang, L.; Davoux, D.; Zhu, Z.; Galipeau, D.; Fong, H.; Qiao, Q. Energy Environ. Sci. **2010**, *3*, 1507–1510.
- (27) Yang, L.; Leung, W. W. F. Adv. Mater. 2011, 23, 4559-4562.

(28) Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nature Mater. 2005, 4, 455–459.

(29) Gubbala, S.; Chakrapani, V.; Kumar, V.; Sunkara, M. K. Adv. Funct. Mater. 2008, 18, 2411–2418.

- (30) Liu, B.; Aydil, E. S. J. Am. Chem. Soc. 2009, 131, 3985-3990.
- (31) Lee, B. H.; Song, M. Y.; Jang, S. Y.; Jo, S. M.; Kwak, S. Y.; Kim, D. Y. J. Phys. Chem. C 2009, 113, 21453–21457.
- (32) Saji, V. S.; Pyo, M. Thin Solid Films **2010**, 518, 6542–6546.

 (32) Suli, V. S., Pyo, M. Thin Sour Thins 2010, 512, 512, 514.
 (33) Sauvage, F.; Di Fonzo, F.; Li Bassi, A.; Casari, C. S.; Russo, V.; Divitini, G.; Ducati, C.; Bottani, C. E.; Comte, P.; Graetzel, M. Nano Lett. 2010, 10, 2562–2567.

- (34) Zhuge, F.; Qiu, J.; Li, X.; Gao, X.; Gan, X.; Yu, W. *Adv. Mater.* **2011**, 23, 1330–1334.
- (35) Stöber, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62–69.
- (36) Park, N. G.; Van De Lagemaat, J.; Frank, A. J. J. Phys. Chem. B 2000, 104, 8989–8994.
- (37) Koo, H. J.; Park, J.; Yoo, B.; Yoo, K.; Kim, K.; Park, N. G. Inorg. Chim. Acta 2008, 361, 677–683.

(38) Archana, P. S.; Jose, R.; Vijila, C.; Ramakrishna, S. J. Phys. Chem. C 2009, 113, 21538–21542.

- (39) Knotter, D. M J. Am. Chem. Soc. 2000, 122, 4345-4351.
- (40) Takano, Y.; Liou, K. N. Appl. Opt. 2010, 49, 3990-3996.